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FIGURE 7.1
Three levels of impact loading pro-
duced upon instantaneous release of
mass m.

7 Impact

7.1 Introduction
The previous chapters have dealt almost exclusively with static loading. We turn now
to the more commonly encountered case of dynamic loading. Dynamic loading
includes both impact, the subject of this chapter, and fatigue, which will be intro-
duced in Chapter 8.

Impact loading is also called shock, sudden, or impulsive loading. The reader
has inevitably experienced and observed many examples of impact loading—driving
a nail or stake with a hammer, breaking up concrete with an air hammer, automobile
collisions (even minor ones such as bumper impacts during careless parking), drop-
ping of cartons by freight handlers, razing of buildings with an impact ball, auto-
mobile wheels dropping into potholes, and so on.

Impact loads may be divided into three categories in order of increasing severity:
(1) rapidly moving loads of essentially constant magnitude, as produced by a
vehicle crossing a bridge, (2) suddenly applied loads, such as those in an explosion,
or from combustion in an engine cylinder, and (3) direct-impact loads, as produced
by a pile driver, drop forge, or vehicle crash. These are illustrated schematically in
Figure 7.1. In Figure 7.1a, mass m is held so that it just touches the top of spring k
and is suddenly released. Dashpot c (also called a damper or shock absorber) adds a
frictional supporting force that prevents the full gravitational force mg from being
applied to the spring immediately. In Figure 7.1b there is no dashpot, so the release
of mass m results in an instantaneous application of the full force mg. In Figure 7.1c,
not only is the force applied instantaneously, but the mass acquires kinetic energy
before it strikes the spring.

The significant thing about the dashpot action in Figure 7.1a is that it results in
a gradual application of the load mg. If the load is applied slowly enough, it can be
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considered as static. The usual way of distinguishing between impact and static load-
ing in this situation is to compare the time required for applying the load with the
natural period of vibration of the undamped mass on the spring.

[For the reader not yet acquainted with elementary vibration theory, imagine
that the mass in Figure 7.1b is attached to the spring, that it is pushed down and
then suddenly released. The mass will then vibrate up and down, with a fixed
interval between consecutive times that it is in the “full up” or “full down” posi-
tion. This time interval is the natural period of vibration of the mass on the
spring. The relationship between this period (t, s), the mass (m, kg or lb # s2/in.),
and the spring constant (k, N/m or lb/in.) is

(a)

Thus, the greater the mass and the softer the spring the longer the period of
vibration (or, the lower the natural frequency of vibration).]

If the time required to apply the load (i.e., to increase it from zero to its full value)
is greater than three times the natural period, dynamic effects are negligible and static
loading may be assumed. If the time of loading is less than half the natural period, there
is definitely an impact. Of course, there is a “gray area” in between—see Table 7.1.

Impact loads can be compressive, tensile, bending, torsional, or a combination
of these. The sudden application of a clutch and the striking of an obstruction by the
bit of an electric drill are examples of torsional impact.

An important difference between static and impact loading is that statically
loaded parts must be designed to carry loads, whereas parts subjected to impact
must be designed to absorb energy.

Material strength properties usually vary with speed of load application. In gen-
eral, this works out favorably because both the yield and ultimate strengths tend to
increase with speed of loading. (Remember, though, that rapid loading tends to pro-
mote brittle fracture, as noted in Section 6.2.) Figure 7.2 shows the effect of strain
rate on tensile properties of mild steel.

One of the problems in applying a theoretical analysis of impact to actual engi-
neering problems is that often the time rates of load application and of strain devel-
opment can only be approximated. This sometimes leads to the use of empirically
determined stress impact factors, together with the static strength properties of the
material. This practice works out well when good empirical data are available that
apply closely to the part being designed. An example is the use of a stress impact
factor of 4 in designing automotive suspension parts. Even when the use of these
empirical factors is justified, it is important for the engineer to have a good under-
standing of the basic fundamentals of impact loading.

t = 2p Am
k

TABLE 7.1 Type of Loading

Load Type Time Required to Apply Load (s)

Static loading tapplied loading 7 3t

“Gray area”

Dynamic loading tapplied loading 6 1
2 t

1
2 t 6 tapplied loading 6 3t
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FIGURE 7.2
Effect of strain rate on tensile properties of mild steel at room
temperature [2].

7.2 Stress and Deflection Caused by Linear and Bending Impact
Figure 7.3 shows an idealized version of a freely falling mass (of weight W) impact-
ing a structure. (The structure is represented by a spring, which is appropriate
because all structures have some elasticity.) To derive from Figure 7.3 the simplified
equations for stress and deflection, the same assumptions are made as when deriv-
ing the equation for the natural frequency of a simple spring–mass system: (1) the
mass of the structure (spring) is negligible, (2) deflections within the mass itself are
negligible, and (3) damping is negligible. These assumptions have some important
implications.

!

k

(a) (b) (c)

Elastic-strain energy stored

in structure =    Fe!

Fo
rc

e
F e

W O

h
Deflection

Work of falling weight = W (h + !)

Guide rod

h

!

!st

1
2

W

k

W

FIGURE 7.3
Impact load applied to elastic structure by falling weight: (a) initial position; (b) position at instant of maximum
deflection; (c) force–deflection-energy relationships.
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1. The first assumption implies that the dynamic deflection curve (i.e., the instan-
taneous deflections resulting from impact) is identical to that caused by the
static application of the same load, multiplied by an impact factor. In reality,
the dynamic deflection curve inevitably involves points of higher local strain
(hence, higher local stress) than does the static curve.

2. Some deflection must inevitably occur within the impacting mass itself. To the
extent that it does, a portion of the energy is absorbed within the mass, thereby
causing the stresses and deflections in the structure to be a little lower than the
calculated values.

3. Any actual case involves some (though perhaps very little) friction damping in
the form of windage, rubbing of the mass on the guide rod and end of the spring
(in Figure 7.3), and internal friction within the body of the deflecting structure.
This damping can cause the actual stresses and deflections to be significantly
less than those calculated from the idealized case.

Keeping the above limitations in mind, the following analysis of the idealized
case provides an understanding of basic impact phenomena, together with equations
that are very helpful as a guide in dealing with linear impact.

In Figure 7.3, the falling mass is such that (in the gravitational field involved) it
has a weight, W (newtons or pounds). The structure is assumed to respond to the
impact elastically, with a spring constant of k (newtons per meter or pounds per
inch). The maximum value of deflection that is due to impact is d (meters or
inches). Fe is defined as an equivalent static force that would produce the same
deflection d; that is, Fe = kd. The static deflection that exists after the energy is
damped out and the weight comes to rest on the structure is designated by dst , where
dst = W/k.

Equating the potential energy given up by the falling mass with the elastic
energy absorbed by the spring (structure),

(b)

Note that the factor of appears because the spring takes on the load gradually.
By definition, since Fe = kd and k = W/dst

(c)

Substituting Eq. c into Eq. b gives

(d)

Equation d is a quadratic equation in d, which is solved routinely to give

(7.1)d = dst¢1 + A1 + 2h
dst
≤

W(h + d) = 1
2

 
d2

dst
 W

Fe = (d/dst) W or d/dst = Fe/W

1
2

W(h + d) = 1
2 Fe d
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Substitution of Eq. c in Eq. 7.1 gives

(7.2)

Since the structure (spring) is assumed to respond elastically to the impact, the
stress produced is proportional to the load. The term in parentheses in Eqs. 7.1 and
7.2 is called the impact factor. It is the factor by which the load, stress, and deflec-
tion caused by the dynamically applied weight, W, exceed those caused by a slow,
static application of the same weight.

In some cases it is more convenient to express Eqs. 7.1 and 7.2 in terms of
velocity at impact v (meters per second or inches per second) instead of height of
fall h. For free fall, the relationship between these quantities is

(e)

where g is the acceleration of gravity measured in meters per second per second or
inches per second per second.

Substitution of Eq. e in Eqs. 7.1 and 7.2 gives

(7.1a)

and

(7.2a)

Reducing distance h to zero with v equal to zero gives the special case of a sud-
denly applied load, for which the impact factor—in Eqs. 7.1 and 7.2—is equal to 2.
This may have been one basis for designers in the past sometimes doubling safety
factors when impact was expected.

In many problems involving impact, the deflection is almost insignificant in
comparison to h (see Figure 7.3). For this case, where Eqs. 7.1 and 7.2 can
be simplified to

(7.3)

(7.4)

Similarly, Eqs. 7.1a and 7.2a simplify to

(7.3a)

(7.4a) Fe = W A v2

gdst
= Av2

 kW
g

 d = dst A v2

gdst
= Cdst v2

g

 Fe = W A2h
dst

= 22Whk

 d = dst A2h
dst

= 22hdst

h W dst ,

Fe = W¢1 + A1 + v2

gdst
≤

d = dst¢1 + A1 + v2

gdst
≤

v2 = 2gh or h = v2

2g

Fe = W¢1 + A1 + 2h
dst
≤
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In the preceding four equations, gravity was considered only as the means for
developing the velocity of the weight at the point of impact (the further action of
gravity after impact being neglected). Hence, Eqs. 7.3a and 7.4a apply also to the
case of a horizontally moving weight striking a structure, where the impact velocity
v is developed by means other than gravity. In this case, dst is the static deflection
that would exist if the entire system were rotated 90° to allow the weight to act ver-
tically upon the structure. Thus, regardless of the actual orientation,

(f)

It is useful to express the equations for deflection and equivalent static force as
functions of the impact kinetic energy U, where, from elementary physics,

(g)

Substitution of Eqs. f and g into Eqs. 7.3a and 7.4a gives

(7.3b)

(7.4b)

Thus, the greater the energy, U, and the stiffer the spring, the greater the equivalent
static force.

7.2.1 Linear Impact of Straight Bar in Tension or Compression

An important special case of linear impact is that of a straight rod or bar impacted
in compression or in tension. The tensile case is illustrated schematically in Figure
7.4a. The tensile rod sometimes takes the form of a bolt. If the impact load is
applied concentrically, and if stress concentration can be neglected (mighty big
“ifs” usually!), then we can substitute into Eq. 7.4b the elementary expressions

(h)s = Fe/A

 Fe = 22Uk

 d = A2U
k

U = 1
2 mv2 = Wv2/2g

dst = W/k

d

L /2

L /2

2d

(b)

d

L

(a)

"d2

4
Area = A =  

FIGURE 7.4
Tensile impact.
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and

(i)

where A and L are the rod cross-sectional area and length, respectively. The result-
ing equation is

(7.5)

where V is the volume of material in the rod.
Note the important implication of Eq. 7.5—the stress developed in the rod is a

function of its volume irrespective of whether this volume is made up of a long rod
of small area or a short rod of large area.

Solving Eq. 7.5 for U gives

(7.5a)

This shows the impact energy capacity of a straight rod to be a remarkably simple
function of its volume, its modulus of elasticity, and the square of the allowable stress.

Despite the importance of this basic relationship, it should be emphasized that
Eqs. 7.5 and 7.5a may, in practice, give results that are considerably optimistic—that is,
give a calculated stress lower than the actual peak stress, and, correspondingly, a calcu-
lated energy capacity greater than that which actually exists. The main reasons for this
are: (1) the stresses are not uniform throughout the member, due to stress concentration
and nonuniformity of loading on the impacted surface, and (2) the impacted member
has mass. The inertia resulting from the rod mass causes the impacted end of the rod to
have a greater local deflection (hence, stress) than it would if inertial effects did not pre-
vent the instantaneous distribution of deflection throughout the length of the rod. The
effect of stress raisers is considered in Section 7.4. The quantitative effect of the mass
of the struck member is left for more advanced works; see [1], [6], and [8].

7.2.2 Sample Problems for Linear and Bending Impact

SAMPLE PROBLEM 7.1 Axial Impact—Importance of Section Uniformity

Figure 7.4 shows two round rods subjected to tensile impact. How do their elastic
energy-absorbing capacities compare? (Neglect stress concentration and use Sy as an
approximation of the elastic limit.)

SOLUTION

Known: Two round rods of given geometry are subjected to tensile impact.

Find: Compare the elastic energy-absorbing capacities of the two rods.

Schematic and Given Data: See Figure 7.4.

Assumptions:
1. The mass of each rod is negligible.

2. Deflections within each impacting mass itself are negligible.

U = s
2

 V
2E

s = A2UE
AL

= A2UE
V

k = AE/L
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3. Frictional damping is negligible.

4. Each rod responds to the impact elastically.

5. The impact load is applied concentrically.

6. Stress concentration can be neglected.

Analysis:
1. The elastic capacity for Figure 7.4a is determined directly from Eq. 7.5a,

where s = Sy :

2. In Figure 7.4b, the energy absorbed by the upper and lower halves must be
determined separately. The smaller lower half is critical; it can be brought to a
stress of Sy , and its volume is V/2 (where V = volume of the full-length rod in
Figure 7.4a). Thus, energy capacity of the lower half is

3. The same force is transmitted through the full length of the rod. The upper half
has four times the area of the lower half; hence, it has four times the volume and
only the stress. Thus the energy capacity of the upper half is

4. The total energy capacity is the sum of Ubl and Ubu , which is five-eighths the
energy capacity of the constant diameter rod of Figure 7.4a. Since the rod in
Figure 7.4b has times the volume and weight of the straight rod, it follows
that the energy capacity per pound of the uniform-section rod is four times as
great as that of the stepped rod.

Comment: The stress concentration in the middle of the stepped bar would further
reduce its capacity and would tend to promote brittle fracture. This point is treated
further in the next section.

SAMPLE PROBLEM 7.2 Relative Energy Absorption Capacity 
of Various Materials

Figure 7.5 shows a falling weight that impacts on a block of material serving as a
bumper. Estimate the relative elastic-energy-absorption capacities of the following
bumper materials.

Density Elastic Modulus Elastic Limit
Material (kN/m3) (E) (Se, MPa)

Soft steel 77 207 GPa 207
Hard steel 77 207 GPa 828
Rubber 9.2 1.034 MPa 2.07

2 
1
2

Ubu =
(Sy/4)2(2V)

2E
= 1

8 Ua

1
4

Ubl =
S2

y   V/2

2E
= 1

2 Ua

Ua =
S2

y   V

2E
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L

Bumper of
cross section A;
volume = AL 

h

W

FIGURE 7.5
Impact loading of compression bumper.

SOLUTION

Known: A weight falls on energy-absorbing bumpers of specified materials.

Find: Compare the elastic-impact capacity of the bumper materials.

Schematic and Given Data:

Assumptions:
1. The mass of the bumper is negligible.

2. Deflections within the impacting weight itself are negligible.

3. Damping is negligible.

4. The bumper responds elastically.

5. The impact load is applied uniformly.

Analysis:
1. From Figure 7.3, the elastic strain energy absorbed is or the area under the

force-deflection curve. At the elastic limit, Fe = SeA, and d = FeL/AE.
Substitution of these values gives

which, not surprisingly, corresponds exactly with Eq. 7.5a.

2. Substitution of the given material properties in the above equation indicates that
on the basis of unit volume, the relative elastic-energy-absorption capacities of
the soft steel, hard steel, and rubber are 1 :16 :20. On a unit mass or weight basis
the relative capacities are 1 :16 :168.

Comment: The capacity per unit volume of a material to absorb elastic energy is
equal to the area under the elastic portion of the stress–strain diagram and is called the
modulus of resilience (Rm) of the material. The total energy absorption capacity in ten-
sion per unit volume of the material is equal to the total area under the stress–strain
curve (extending out to fracture) and is sometimes called the modulus of toughness
(Tm) of the material. In the above problem the two steels differed markedly in their
moduli of resilience, but their relative toughnesses would likely be comparable.

U = 1
2 Fe d =

S2
e   AL

2E
=

S2
e   V

2E

1
2 Fe d,
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SAMPLE PROBLEM 7.3 Bending Impact—Effect of Compound Springs

Figure 7.6 shows a wood beam supported on two springs and loaded in bending
impact. Estimate the maximum stress and deflection in the beam, based on the
assumption that the masses of the beam and spring can be neglected.

SOLUTION

Known: A 100-lb weight falls from a specified height onto a wood beam of known
material and specified geometry that is supported by two springs.

Find: Determine the maximum beam stress and deflection.

Schematic and Given Data:

 1   in. ×  3   in., I = bh3/12 = 6.46 in.4

2 × 4 white pine

E = 106 psi

Mod. of rupture = 6 ksi

30 in.

12 in.

60 in.

100 lb/in. 100 lb/in.5
8

5
8
        Z = I/c = 3.56 in.3  

 100 lb

FIGURE 7.6
Bending impact, with compound spring.

Assumptions:
1. As stated in the problem, the masses of the beam and spring can be neglected.

2. The beam and springs respond elastically.

3. The impact load is applied uniformly at the center of the beam.

Analysis:
1. The static deflection for the beam only, supporting springs only, and total system are

2. From Eq. 7.1 or 7.2 the impact factor is

1 + A1 + 2h
dst

= 1 + A1 + 24
0.57

= 7.6

 dst(total) = 0.070 + 0.50 = 0.57 in.

 dst(springs) = P
2k

= 100
2(100)

= 0.50 in.

 dst(beam) = PL3

48EI
=

100(60)3

48(106)(6.46)
= 0.070 in.

c07.qxd  8/3/11  8:59 PM  Page 297



3. Hence, the total impact deflection is 0.57 * 7.6 = 4.3 in., but the deflection of
the beam itself is only 0.07 * 7.6 = 0.53 in.

4. The extreme-fiber beam stress is estimated from Fe = 100 * 7.6 = 760 lb:

Comments:
1. The estimated stress is well within the given modulus of rupture of 6000 psi.

(The modulus of rupture is the computed value of M/Z at failure in a standard
static test.)

2. If the supporting springs are removed, the total static deflection is reduced to
0.07 in., and the impact factor increases to 19.6. This would give a computed
maximum beam stress of 8250 psi, which is greater than the modulus of rupture.
If the inertial effect of the beam mass does not cause the actual stress to be very
much higher than 8250 psi, it is possible that the “dynamic-strengthening
effect” shown in Figure 7.2 would be sufficient to prevent failure. Because this
effect is usually appreciable for woods, the results of standard beam impact tests
are often included in references giving properties of woods.

7.3 Stress and Deflection Caused by Torsional Impact
The analysis of the preceding section could be repeated for the case of torsional sys-
tems, and a corresponding set of equations developed. Instead, advantage will be
taken of the direct analogy between linear and torsional systems to write the final
equations directly. The analogous quantities involved are

Linear Torsional

d, deflection (m or in.) u, deflection (rad)

Fe , equivalent static force (N or lb) Te , equivalent static torque (N # m or lb # in.)

m, mass (kg or lb # s2/in.) I, moment of inertia (N # s2 # m or lb # s2 # in.)

k, spring rate (N/m or lb/in.) K, spring rate (N # m/rad or lb # in./rad)

v, impact velocity (m/s or in./s) v, impact velocity (rad/s)

U, kinetic energy (N # m or in. # lb) U, kinetic energy (N # m or in. # lb)

The two following equations have the letter t added to the equation number to
designate torsion:

(7.3bt)

(7.4bt)

For the important special case of torsional impact of a solid round bar of diameter d:

 Te = 22UK

u = A2U
K

s = M
Z

=
Fe L

4Z
=

760(60)
4(3.56)

= 3200 psi

298 Chapter 7 ■ Impact
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1. From Table 5.1,

(i)

2. From Eq. 4.4 with T replaced by Te ,

(j)

3. Volume, V = pd2L/4 (k)

Substitution of Eqs. i, j, and k into Eq. 7.4bt gives

(7.6)

SAMPLE PROBLEM 7.4 Torsional Impact

Figure 7.7a shows the shaft assembly of a grinder, with an abrasive wheel at each end
and a belt-driven sheave at the center. (The sheave can also be thought of as the armature
of an electric motor.) When turning at 2400 rpm, the smaller abrasive wheel is acciden-
tally jammed, causing it to stop “instantly.” Estimate the resulting maximum torsional
stress and deflection of the shaft. Consider the abrasive wheels as solid disks of density
r = 2000 kg/m3. The shaft is steel (G = 79 GPa), and its weight may be neglected.

SOLUTION

Known: The smaller wheel of a grinder turning at 2400 rpm is stopped instantly.

Find: Determine the maximum shaft stress and torsional deflection.

Schematic and Given Data:

t = 2 AUG
V

t =
16Te

pd3

K = T
u

= K¿  G
L

= pd4
 G

32L

100-mm
dia.

120-mm
dia.

20-mm
dia.

20 mm20 mm

250 mm

FIGURE 7.7a
Torsional impact of grinder shaft.

Assumptions:
1. The weight of the shaft and pulley may be neglected.

2. The shaft acts as a torsional spring and responds elastically to the impact.

3. Deflections within the abrasive wheels are negligible.
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Analysis:
1. It is the energy in the 120-mm wheel that must be absorbed by the shaft. From

the torsional equivalent of Eq. g, this is

where

and

2. Combining the preceding equations, we have

3. Substituting numerical values (with units of meters, kilograms, and seconds) gives

4. From Eq. 7.6

or

5. The torsional deflection,

where T = tJ/r (i.e., t = Tr/J); hence,

Comments:
1. The preceding calculations assumed that the stresses are within the elastic range.

Note that no provision was made for stress concentration or for any
superimposed bending load that would also be present as a result of the jam-
ming. Torque applied to the sheave by the belt was also neglected, but this could
be negligible because of belt slippage. In addition, it is only because of assumed
belt slippage that the inertia of the driving motor is not a factor.

2. The effect of the shaft radius, r, on shaft shear stress, t, and torsional deflection,
u, can be explored by computing and plotting the shaft stress and torsional
deflection for a shaft radius from 5 mm to 15 mm, and for a shear modulus, G,
of steel (79 GPa), cast iron (41 GPa) and aluminum (27 GPa)—see Figure 7.7b.

u = tL
rG

=
(321.7 * 106)(0.250)

(0.010)(79 * 109)
= 0.10 rad = 5.7°

u = TL
JG

t = 322 MPa

 = 2 C(25.72)(79 * 109)

p(0.010)2(0.250)
= 321.7 * 106 Pa

 t = 2 AUG
V

 U = 25.72 

kg # m2

s2 = 25.72 N # m

 U = 1
4 p(0.060)4(0.020)(2000)a2400 * 2p

60
b2

U = 1
4 pr4

wheel  trv2

m = pr2
wheel  tr

I = 1
2 mr2

wheel

U = 1
2 Iv2
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3. For a 2024-T4 aluminum alloy shaft with a 10 mm radius, with Sy = 296 MPa
(Appendix C-2) and with Ssy = 0.58Sy = 172 MPa, the shear stress is
t = 188 MPa and the shaft rotation is u = .174 rad = 10°. Inspection of the
plot of shaft shear stress versus shaft radius shows that shaft radius should be
greater than 11 mm to avoid yielding in a 2024-T4 aluminum alloy shaft.

7.4 Effect of Stress Raisers on Impact Strength
Figure 7.8 shows the same tensile impact bar as Figure 7.4a, except that recognition
is given to the fact that stress concentration exists at the ends of the bar. As with sta-
tic loading it is possible that local yielding would redistribute the stresses so as to
virtually nullify the effect of the stress raiser. But under impact loading the time
available for plastic action is likely to be so short that brittle fracture (with an effec-
tive stress concentration factor almost as high as the theoretical value, Kt , obtained
from a chart similar to Figure 4.35b) will sometimes occur even in a material that
exhibits ductile behavior in the tensile test. In terms of the discussion in Section 6.2,
adding a stress raiser and applying an impact load are both factors tending to raise
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FIGURE 7.7b
Shear stress and torsional deflection vs. shaft radius.
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Ki = 1.5

Ki = 1.5

d

FIGURE 7.8
Plain impact bar.

the transition temperature—that is, cause brittle fracture without dropping to as low
a temperature.

Because of the difficulty in predicting impact notch effects from theoretical con-
siderations, standard notched impact tests are used, such as the Charpy and Izod.
These, too, have their limitations, for notched impact strength varies markedly with
size, shape, and nature of impact. Because of this, special laboratory tests that more
closely simulate actual conditions are sometimes used.

SAMPLE PROBLEM 7.5 Notched Tensile Impact

Suppose that from special tests it has been determined that the effective stress con-
centration factor for impact loading, Ki , at the ends of the rod in Figure 7.8 is 1.5,
as shown. How much does the stress raiser decrease the energy-absorbing capacity
of the rod, as estimated from Eq. 7.5a?

SOLUTION

Known: A round rod subject to impact loading has a specified stress concentration at
each end.

Find: Determine the effect of a stress raiser on rod energy-absorbing capacity.

Schematic and Given Data: See Figure 7.8.

Assumption: Under impact loading, the rod material exhibits brittle behavior.

Analysis: First, two observations: (a) If the rod is sufficiently long, the volume of
material in the region of the end fillets is a very small fraction of the total and (b) the
material at the critical fillet location cannot be stressed in excess of the material
strength S. This means that nearly all the material can be considered as stressed to a
uniform level that cannot exceed S/Ki , or, in this instance, S/1.5. Thus, a good
approximation is that after considering the stress raiser, the same volume of mater-
ial is involved, but at a stress level reduced by a factor of 1.5. Since the stress is
squared in Eq. 7.5a, taking the notch into consideration reduces the energy capacity
by a factor of 1.52, or 2.25.
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SAMPLE PROBLEM 7.6 Notched Tensile Impact

Figure 7.9 shows the same impact bar as Figure 7.8, except that a sharp groove, with
Ki = 3, has been added. Compare the impact-energy capacities of the bars in
Figures 7.8 and 7.9.

SOLUTION

Known: A grooved impact bar and a plain impact bar are each subjected to impact
loading.

Find: Compare the impact-energy capabilities of both bars.

Schematic and Given Data:

Ki = 1.5

Ki = 3

Ki = 1.5
d

d
2

FIGURE 7.9
Grooved impact bar.

Assumption: The rod materials exhibit brittle behavior.

Analysis: In Figure 7.9, the impact capacity is limited to the value that brings the
stress at the groove to the material strength S. Since the effective stress concentration
factor is 3, the nominal stress level in the section of the groove is S/3. Because of the
4 :1 area ratio, the nominal stress in the bulk of material (not in the groove plane) is
only S/12. For a long bar, the percentage of volume near the groove is very small.
Thus, with reference to Eq. 7.5a, the only substantial difference made by introducing
the groove is to reduce the value of s from S/1.5 to S/12. Since s is squared in the
equation, the groove reduces the energy capacity by a factor of 64; that is, the grooved
bar has less than 2 percent of the energy-absorbing capacity of the ungrooved bar!

From this discussion, it follows that the effective design of an efficient energy-
absorbing member comprises two key steps.

1. Minimize stress concentration as much as possible. (Always try to reduce the
stress at the point where it is highest.)

2. Having done this, remove all possible “excess material” so that the stress every-
where is as close as possible to the stress at the most critical point. Removing
this excess material does not reduce the load that the member can carry, and the
deflection is increased. Since energy absorbed is the integral of force times
deflection, energy-absorbing capacity is thereby increased. (Recall the dramatic
example of this principle in Sample Problem 7.1.)
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SAMPLE PROBLEM 7.7 Modifying a Bolt Design for Greater Impact Strength

Figure 7.10a shows a bolt that is subjected to tensile impact loading. Suggest a mod-
ified design that would have greater energy-absorbing capacity. How much increase
in capacity would the modified design provide?

SOLUTION

Known: A standard bolt of specified geometry is to be modified for tensile impact
loading.

Find: Modify the bolt geometry and estimate the increase in energy-absorbing
capacity.

Schematic and Given Data:

Ki = 3.4

A = 700 mm2

"Very long"
(>10d)

"Negligible"

Ki = 3.5

A = 600 mm2

Shank

Head

Ki = 3.4

A = 300 mm2

Ki =1.5

Ki = 3.0

Ki = 1.5

A = 600 mm2

(a) Original design (b) Modified design

d

FIGURE 7.10
Bolt subjected to tensile impact.

Decisions: The following decisions are made in the design analysis.
1. Minimize stress concentration by using a thread with a smooth, generous fillet

at the root.
2. Leave a short length of full-diameter shank under the bolt head to serve to center

the bolt in the bolt hole.
3. Design for uniform stress throughout the bolt by reducing the diameter in the

lesser-stressed portion of the shank.

Assumptions: Material of strength S is used for both bolts. Other assumptions are
made as required throughout the design analysis.

Design Analysis:
1. Reduce stress concentration where it is most critical. The highest stress is at the

thread (Ki = 3.5, acting at an area of only 600 mm2). Assume that by modifying
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the thread slightly to provide a smooth, generous fillet at the root, Ki can be
reduced to 3.0, as shown in Figure 7.10b. The other point of stress concentration
is in the fillet under the bolt head. This fillet must be small in order to provide
adequate flat area for contact. Actually, there is no incentive to reduce stress con-
centration at that point because the stress there will be less than at the thread root,
even with the modified thread design.1

2. Leave a short length of full-diameter shank under the bolt head to serve as a
pilot to center the bolt in the bolt hole. The diameter in the rest of the shank can
be reduced to make the shank stress nearly equal to the stress at the thread root.
Figure 7.10b shows a reduced shank diameter that is flared out to the full diam-
eter with a large radius, to give minimal stress concentration. On the basis of a
conservative stress concentration estimate of 1.5, the shank area can be reduced
to half the effective-stress area at the thread:

3. Assume that the bolt is sufficiently long so that the volume of uniformly
stressed material in the central portion of the shank is the only volume that need
be considered, and that the volumes in the two critical regions are proportional
to the areas 700 and 300 mm2. From Eq. 7.5a, U = s2V/2E. Since E is a con-
stant, the ratio of energy capacities for Figures 7.10b and 7.10a is

(m)

In Figure 7.10a the stress in the large volume of material in the shank is less
than the material strength S because of both the stress concentration and the dif-
ference in area between the thread and shank. Thus, if s = S at the thread root,
the shank stress is

Let the shank volume in Figure 7.10a be designated as V. In Figure 7.10b, the
stress at the thread can again be S. Corresponding shank stress is

The shank volume in Figure 7.10b is V (300/700), or 0.429V. Substituting these
values in Eq. m gives

Ub

Ua
=

(0.667S)2(0.429V)

(0.245S)2(V)
= 3.18

sb = S
3.0

 a600
300
b = 0.667S

sa = S
3.5

 a600
700
b = 0.245S

Ub

Ua
=
s2

b Vb

s2
a Va

A = 600 * 1.5
3.0

= 300 mm2

s = P
A

 Ki ; a P
700

* 3.4b
fillet

6 a P
600

* 3.0b
thread root

1 This is usually, but not always, the case.
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(a)

Axial hole

(b)

FIGURE 7.11
Bolts designed for energy absorption.
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Comments:
1. The redesign has over three times the capacity of the original, as well as

being lighter.

2. For a given volume of material, the bolt design with the more nearly uniform
stress throughout will have the greater energy-absorbing capacity.

Two other designs of bolts with increased energy-absorbing capacity are illus-
trated in Figure 7.11. In Figure 7.11a, the full-diameter piloting surface has been
moved to the center of the shank in order to provide alignment of the two clamped
members. Figure 7.11b shows a more costly method of removing excess shank mate-
rial, but it preserves nearly all the original torsional and bending strength of the bolt.
The torsional strength is often important, for it influences how much the nut can be
tightened without “twisting off” the bolt.
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Problems

Section 7.2

7.1 According to marketing materials from a major athletic shoe manufacturer,

the human foot is punished by the forces of impact it encounters during athletic
activities. This makes cushioning essential to the development of a good athletic
shoe. A cushioning system has been designed to help protect the foot from these
harmful forces by helping to absorb impact. This cushioning system has the ability
to absorb shock by dissipating vertical impact and dispersing it into a horizontal
plane. The cushioning system is available for absorbing shock when it is placed in
the forefoot and/or rear foot of the shoes mid-sole.

Using the force flow concept, explain, if possible, how a gel cushioning system could
absorb shock by dissipating vertical impact and dispersing it into a horizontal plane.

7.2 The previous chapters have dealt essentially with considerations of stress, strain, and
strength arising from static loading. The present chapter deals with impact, and the
subsequent chapter treats fatigue—both are cases of dynamic loading. Impact loading
is also referred to as shock, sudden, or impulsive loading. Impact loads may be tor-
sional and/or linear in nature. How does impact loading differ from static loading?

7.3 A tensile impact bar, similar to the one in Figure 7.4a, fractured in service. Because
the failure happened to occur near the center, a naive technician makes a new bar
exactly like the old one except that the middle third is enlarged to twice the diame-
ter of the ends. Assuming that stress concentration can be neglected (not very realis-
tic), how do the impact capacities of the new and old bars compare?

7.4 A vertical member is subjected to an axial impact by a 100-lb weight dropped from a
height of 2 ft (similar to Figure 7.4a). The member is made of steel, with Sy = 45 ksi,
E = 30 * 106 psi. Neglect the effect of member mass and stress concentration. What
must be the length of the member in order to avoid yielding if it has a diameter of
(a) 1 in., (b) (c) 1 in. for half of its length and for the other half?
[Ans. 90.5 in., 40 in., 125.2 in.]

7.5 A car skidded off an icy road and became stuck in deep snow at the road shoulder.
Another car, of 1400-kg mass, attempted to jerk the stuck vehicle back onto the road
using a 5-m steel tow cable of stiffness k = 5000 N/mm. The traction available to the
rescue car prevented it from exerting any significant force on the cable. With the aid of
a push from bystanders, the rescue car was able to back against the stuck car and then
go forward and reach a speed of 4 km/h at the instant the cable became taut. If the cable
is attached rigidly to the center of mass of each car, estimate the maximum impact force
that can be developed in the cable, and the resulting cable elongation (see Figure P7.5).

1 
1
2 in.1 

1
2 in.,

k = 5000 N/mm
L = 5 m           

v = 4 km/hr 
m = 1400 kg

Rope

FIGURE P7.5
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Steel cable
A = 2.5 in.2

E = 12 × 106

FIGURE P7.12
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7.6 Repeat Problem 7.5 where the rescue car has a 2800-kg mass.

7.7 Repeat Problem 7.5 where the steel tow cable has a stiffness of 2500 N/mm.

7.8 Repeat Problem 7.5 where the rescue car reached a speed of 8 km/hr at the instant the
cable became taut.

7.9 The rescue attempt in Problem 7.5 resulted in only slight movement of the stuck car
because the cable force decayed so quickly to zero. Besides, concern was felt about
possible damage to the car attachment points because of the high “instantaneous”
force developed. One witness to the proceedings brought a 12-m elastic cable of
overall stiffness only 2.4 N/mm and suggested that it be tried. Because of the longer
length of the elastic cable, its use enabled the rescue car to reach 12 km/h at the point
of becoming taut. Estimate the impact force developed and the resulting cable elon-
gation. If the stuck vehicle does not move significantly until the rescue car has just
come to a stop, how much energy is stored in the cable? (Think of this in terms of
the height from which a 100-kg mass would have to be dropped to represent an
equivalent amount of energy, and consider the potential hazard if the cable should
break or come loose from either car.) What warnings would you suggest be provided
with elastic cables sold for this purpose?

7.10 A tow truck weighing 6000 lb attempts to jerk a wrecked vehicle back onto the road-
way using a 15-ft length of steel cable 1 in. in diameter (E = 12 * 106 psi for the
cable). The truck acquires a speed of 3 mph at the instant the cable slack is taken up,
but the wrecked car does not move. (a) Estimate the impact force applied to the
wrecked vehicle and the stress produced in the cable. (b) The cable breaks in the
middle, and the two 7.5-ft halves are connected in parallel for a second try. Estimate
the impact force and cable stress produced if the wrecked vehicle still remains fixed.
[Ans. (a) 60.6 ksi, 47,600 lb]

7.11 Repeat Sample Problem 7.3, except use a 1.0 * 1.0-in. (b * h) aluminum beam.

7.12 A 5-ton elevator is supported by a standard steel cable of 2.5-in.2 cross section and
an effective modulus of elasticity of 12 * 106 psi. As the elevator is descending at
a constant 400 ft/min, an accident causes the top of the cable, 70 ft above the eleva-
tor, to stop suddenly. Estimate the maximum elongation and maximum tensile stress
developed in the cable (see Figure P7.12).
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7.13 For the 5-ton elevator described in Problem 7.12, explore the effect of cable length
on the maximum elongation and maximum tensile stress developed in the cable by
computing and plotting the cable elongation and tensile stress for a cable length
above the elevator of 1 to 500 feet.

7.14 A 60-foot-long, 950-lb gin pole used to raise sections of a communication tower is
suspended by a standard steel cable of 0.110-in.2 cross section with an effective
modulus of elasticity of 12 * 106 psi. As the gin pole descends at a constant speed
of 30 ft/min, an accident causes the top of the cable, 70 ft above the gin pole, to stop
suddenly. Estimate the maximum elongation and maximum tensile stress developed
in the cable.

Section 7.3

7.15 The vertical drive shaft in Figure P2.31 is 20 mm in diameter, 650 mm long, and
made of steel. The motor to which it is attached at the top is equivalent to a steel fly-
wheel 300 mm in diameter and 25 mm thick. When the vertical shaft is rotating at
3000 rpm, the propeller strikes a heavy obstruction, bringing it to a virtually instan-
taneous stop. Assume that the short horizontal propeller shaft and the bevel gears
have negligible flexibility. Calculate the elastic torsional shear stress in the vertical
shaft. (Since this stress far exceeds any possible torsional elastic strength, a shear pin
or slipping clutch would be used to protect the shaft and associated costly parts.)

7.16 Repeat Problem 7.15 where the vertical shaft is rotating at 6000 rpm.

7.17 Repeat Problem 7.15 where the vertical shaft is 10 mm in diameter.

7.18 Repeat Problem 7.15 where the vertical drive shaft is 325 mm long.

7.19 Figure P7.19 shows a cantilevered steel rod with a 90º bend lying in a horizontal
plane. Weight W is dropped onto the end of the rod from height h. If the steel has a
yield strength of 50 ksi, what combinations of W and h are required to produce yield-
ing of the rod? Neglect the weight of the rod and neglect transverse shear stresses.
Assume the maximum-distortion-energy theory of failure applies.

[Ans. Wh ≥ 92.4 in.-lb, based on an additional simplifying assumption.]

Problems 309

h

10 in.

15 in.

1.0-in. dia.

W

FIGURE P7.19
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(a)

Original design New design

(b)

    Thread:
     Area = 600 mm2

K  = 3.9

Thread:
Area = A

      K  = 2.6

Area = A
K  = 2.6

"Very long"

A= 600 mm2

K  = 3.9

K  = 1.3

K  = 1.3

Platform

Area = 800 mm2

Area = 800 mm2

FIGURE P7.21

K  = 1.55

K  = 4

Drop
weight

24 mm dia.

K  = 1.4

30 mm dia.

FIGURE P7.20

Section 7.4

7.20 For the tensile impact bar shown in Figure P7.20, estimate the ratio of impact energy
that can be absorbed with and without the notch (which reduces the diameter to 24 mm)
Assume that K = Ki = Kt.
[Ans.: 0.06 :1]

7.21 A platform is suspended by long steel rods as shown in Figure P7.21a. Because
heavy items are sometimes dropped on the platform, it is decided to modify the rods
as shown in Figure P7.21b to obtain greater energy-absorbing capacity. The new
design features enlarged ends, blended into the main portion with generous fillets,
and special threads giving less stress concentration. (Assume that K = Ki = Kt). 
(a) What is the smallest effective threaded section area A (Figure P7.21b) that

would provide maximum energy-absorbing capability?
(b) Using this value of A (or that of the next larger standard thread size), what

increase in energy-absorbing capacity would be provided by the new design?
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dia. = 36 mm

K  = 2.2

250 mm

(Fracture
location)

3 mm
(negligible)

K  = 1.5

Hole dia., d

A = 800 mm2

K  = 3.8

(a)

Original design

(b)

Modified design

Assume that hole
drilled to this depth,
does not significantly
change the K  = 3.8
factor at the thread.

FIGURE P7.22

7.22 The initial design of a bolt loaded in tensile impact is shown in Figure P7.22a. The
bolt fractures next to the nut, as shown. A proposed redesign, Figure P7.22b involves
drilling an axial hole in the unthreaded portion and incorporating a larger fillet radius
under the bolt head.
(a) What is the theoretically optimum diameter of the drilled hole?
(b) Using this hole size, by what approximate factor do the modifications increase

the energy-absorbing capacity of the bolt?

"Very long"

K  = 2

K  = 2
1-in dia.

0.1-in dia. hole

FIGURE P7.23

7.23 Figure P7.23 shows a tensile impact bar with a small transverse hole. By what fac-
tor does the hole reduce the impact-energy-absorbing capacity of the bar?

7.24D Redesign the bolt loaded in tensile impact and shown in Figure P7.22a to increase
the energy absorbing capacity by a factor of 3 or more.

7.25D Redesign the plain impact bar shown in Figure 7.8 of the text to reduce the impact-
energy-absorbing capacity of the impact bar by a factor of 2 or more. Assume that
the bar has a diameter, d = 1.0 in.
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